Заглавная страница. Шина гипертранспорт


Hyper-Transport

Шина HyperTransport (HT), ранее известная как Lightning Data Transport (LDT), — это двунаправленная последовательно/параллельная компьютерная шина, с высокой пропускной способностью и малыми задержками. Для разработки и продвижения данной шины был образован консорциум HyperTransport Technology. Технология используется компаниями AMD и Transmeta в x86 процессорах, PMC-Sierra, Broadcom и Raza Microelectronics в MIPS микропроцессорах, NVIDIA, VIA, SiS, ULi/ALi, AMD, Apple Computer и HP в наборах системной логики для ПК, HP, Sun Microsystems, IBM, и IWill в серверах, Cray, Newisys и PathScale в сверхкомпьютерах, а так же компанией Cisco Systems в маршрутизаторах.

Обзор шины

HyperTransport работает на частотах от 200 МГц до 2,6 ГГц (сравните с шиной PCI и её 33 или 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

HyperTransport поддерживает автоматическое определение ширины шины, от 2-х битных линий до 32-х битных линий. Полноразмерная, полноскоростная, 32-х битная шина в двунаправленном режиме способна обеспечить пропускную способность до 20800 МБ/с (2*(32/8)*2600), являясь, таким образом, самой быстрой шиной среди себе подобных. Шина может быть использована как в подсистемах с высокими требованиями к пропускной способности (оперативная память и ЦПУ), так и в подсистемах с низкими требованиями (переферийные устройства). Данная технология также способна обеспечить низкие задержки для других применений в других подсистемах.

Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32 разрядных слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете — всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40 битный адрес. Шина поддерживает 64 разрядную адресацию — в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-х битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-х битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).

Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений системы, для передачи прерываний, для конфигурирования устройств, подключенных к шине и для передачи данных.

Операция записи на шине бывает двух видов — posted и non-posted. Posted-операция записи заключается в передаче единственного пакета, содержащего адрес, по которому необходимо произвести запись, и данные. Эта операция обычно используется для обмена данными с высокоскоростными устройствами, например, для DMA передачи. Non-posted операция записи состоит из посылки двух пакетов: устройство, инициирующее операцию записи посылает устройству-адресату пакет, содержащий адрес и данные. Устройство-адресат, получив такой пакет, проводит операцию записи и отсылает устройству-инициатору пакет, содержащий информацию о том, успешно ли произведена запись. Таким образом, posted-запись позволяет получить максимальную скорость передачи данных (нет затрат на пересылку пакета-подтверждения), а non-posted-запись позволяет обеспечить надёжную передачу данных (приход пакета-подтверждения гарантирует, что данные дошли до адресата).

Шина HyperTransport поддерживает технологии энергосбережения, а именно ACPI. Это значит, что при изменении состояния процессора (C-state) на энергосберегающее, изменяется также и состояние устройств (D-state). Например, при отключении процессора НЖМД также отключаются.

Электрический интерфейс HyperTransport/LDT — низковольтные дифференциальные сигналы (Low Voltage Differential Signaling (LVDS)), с напряжением 2,5 В.

Применение HyperTransport

Замена шины процессора

Шина HyperTransport нашла широкое применение, в основном, в качестве замены шины процессора. Для примера, к процессору Pentium нельзя напрямую подключать устройства с шиной PCI, так как этот процессор использует свою специализированную шину (которая может быть различной у разных поколений процессоров). Для подключения дополнительных устройств (например с шиной PCI) в таких системах необходимы дополнительные устройства для сопряжения шины процессора с шиной периферийных устройств (мосты). Данные адаптеры обычно включают в специализированные наборы системной логики, называемые северный мост и южный мост.

Процессоры разных производителей могут использовать разные шины, а значит для них нужны разные мосты для соединения шины процессора с периферийными шинами. Компьютеры, использующие шину HyperTransport более универсальны и просты, а также более производительны. Однажды разработанный мост PCI-HyperTransport позволяет взаимодействовать любому процессору, поддерживающиму шину HyperTransport и любому устройству шины PCI. Для примера, NVIDIA nForce чипсет использует шину HyperTransport для соединения между северным и южным мостами.

Межпроцессорная шина

Другое применение HyperTransport — шина NUMA многопроцессорных компьютеров. AMD использует HyperTransport как часть проприетарной архитектуры Direct Connect Architecture в своей линейке процессоров Opteron и Athlon64. Технология HORUS interconnect компании Newisys расширяет концепцию до уровня кластерных систем.

Применение в маршрутизаторах и коммутаторах

HyperTransport так же может быть использована в маршрутизаторах и коммутаторах. Коммутаторы и маршрутизаторы могут иметь множество портов, данные между которыми должны перенаправляться как можно быстрее. Например, 4-х портовый 100 Мбит/с Ethernet коммутатор нуждается во внутренней шине с пропускной способностью не менее 800 Мбит/с (100 Мбит/с * 4 порта * 2 направления). Пропускная способность шины HyperTransport значительно превосходит 800 Мбит/с, что позволяет применить её для построения такого коммутатора.

HTX и сопроцессорные соединения

Недостатоная пропускная способность шины, соединяющей ЦПУ и сопроцессор часто является причиной головной боли у разработчиков компьютерных систем. Характеристики HyperTransport позволяют использовать её для данного применения, был разработан разъём для подключения сопроцессоров по шине HyperTransport, получивший название HTX (англ. HyperTransport eXpansion), и использующий разъём, механически совместимыс с тем, который используется для подключения устройст 16-x PCI-Express. Использование разъёма HTX позволяет установленной в него карте расширения напрямую обмениваться данными с ЦПУ, а также осуществлять DMA-сеансы доступа к системной ОЗУ. Вскоре и сопроцессоры, основанные на ПЛИС получат интерфейс HyperTransport и, таким образом, возможность простой интеграции с материнской платой. Современное поколение ПЛИС от основных производителей (Altera и Xilinx) могут получить прямую поддержку интерфейса HyperTransport уже в ближайшее время.

Консорциум HyperTransport

В консорциум HyperTransport входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, а так же Transmeta. Он управляет спецификациями HyperTransport, проводит новые разработки и продвижение стандарта. На 2005 год Дэвид Рич (David Rich) из AMD являлся президентом консорциума, Марио Савали (Mario Cavalli) — генеральным менеджером, Брайен Холден (Brian Holden) из PMC-Sierra одновременно являлся вице президентом и возглавлял группу технических разработок, а Гарри Хиршман (Harry Hirschman) из PathScale возглавлял маркетинговую группу.

Реализации

  • ht_tunnel от проекта OpenCores (под лицензией MPL)
  • ATI Radeon® Xpress 200 для процессоров AMD
  • NVIDIA nForce™ Professional MCPs (media and communications processors)
  • Системный контроллер ServerWorks HT-2000 HyperTransport™ SystemI/O™ Controller
  • Шина HyperTransport используется в компьютерах фирмы Apple с процессором PowerPC G5

Смотрите также

Ссылки

mediaknowledge.ru

Шины передачи данных Arapahoe и HyperTransport

Общая производительность компьютера, не беря во внимание работу с жесткими дисками, зависит от трех компонент — процессора, памяти и видеосистемы. Каждая из них в той или иной мере влияет на быстродействие в отдельных приложениях. Например, скорость работы с графическими данными зависит чаще всего от видеосистемы. Как же быть, если производительность этих трех компонент настолько велика, что системная шина, соединяющая их, не позволяет нарастить быстродействие системы в целом? Именно этот факт побуждает производителей к изменениям спецификации шины PCI и увеличению ее пропускной способности. Внутренняя шина компьютера на текущий момент является "бутылочным горлышком" при передаче данных между компонентами; именно она не позволяет наращивать производительность. В настоящее время полным ходом ведутся работы над новыми стандартами системных шин, для того чтобы через 2 года они могли быть реализованы в железе. Спецификации некоторых из них уже сейчас практически готовы, и в ближайшее время появятся продукты, реализующие их преимущества. Как вы уже наверно поняли, далее речь пойдет о технологиях Arapahoe и HyperTransport, призванных заменить системную шину PCI, которая медленно, но уверенно устаревает и перестает удовлетворять современным требованиям.

Задача увеличения пропускной способности PCI (Peripheral Component Interconnect) встала перед инженерами достаточно давно. Появление спецификации AGP — это результат изменений в архитектуре, призванных увеличить производительность компьютера в целом за счет ускорения пересылки графических данных. В настоящий момент шина ISA практически закончила свое существование, передав свои функции шине PCI. Частично ее функции взяла на себя USB (Universal Serial Bus). Одна технология устаревает — на смену ей приходит другая, и вполне возможно, что не одна, а сразу несколько.

Современная системная шина — это не просто "проводочки", соединяющие отдельные устройства. Это прежде всего протокол, с помощью которого происходит обмен данными, и главная проблема состоит именно в разработке этого протокола. Увеличение тактовых частот процессоров, появление таких видов памяти как DDR RAM и Rambus с большой пропускной способностью накладывает свой отпечаток на работу компьютера. Шина перестает справляться с нагрузками, не позволяя наращивать производительность системы за счет увеличения скорости работы процессоров, видеокарт и памяти.

В настоящий момент мы являемся свидетелями изменения приоритетов в индустрии высоких технологий. После того как Intel и AMD оптимизировали свои CPU, они обратили внимание на то, что производительность компьютера можно увеличить еще и за счет оптимизации чипсетов. Следующей на очереди стала память, в результате чего были разработаны спецификации Rambus DRAM и DDR RAM (хотя разработки этих видов памяти велись сторонними фирмами, известно, какое влияние оказали Intel и AMD на их реализацию). Следующим же этапом этой гонки стала борьба за увеличение пропускной способности системной шины. А результатом ее станут, как можно предположить, не только денежные поступления, но и выигрыш в сражении между архитектурами.

Проблема увеличения пропускной способности системной шины затрагивает интересы многих фирм, но прежде всего — производителей процессоров, памяти и видеочипов/видеокарт. Ранее решением проблем такого типа занималась неприбыльная организация PCI Special Interest Group (PCI SIG), в обязанности которой входила разработка, реализация и поддержка спецификации шины PCI. В настоящий момент на рынке образованы две группы, которые продвигают свои собственные стандарты. Первую, под названием HyperTransport Technology Consortium (HTTC), возглавляет AMD. Эта группа продвигает на рынок стандарт под названием HyperTransport. Вторая группа, возглавляемая Intel, имеет название Arapahoe Working Group. Стандарт Arapahoe, продвигаемый этой неприбыльной организацией, призван заменить шину PCI-X.

Табл. 1. Фирмы, входящие в группы поддержки стандартов Arapahoe и HyperTransport
Arapahoe SIGHTTC
  • Intel
  • Compaq
  • Dell
  • IBM
  • Microsoft
  • AMD
  • API Networks
  • Apple
  • Cisco Systems
  • NVIDIA Corporation
  • PMC-Sierra
  • Sun Microsystems
  • Transmeta

Конкуренция между двумя полупроводниковыми гигантами с рынков процессоров и чипсетов перебросилась на рынок архитектур системных шин. В настоящий момент эти стандарты позиционируются на рынок как открытые, но за то время, которое пройдет до их реализации в железе, может многое измениться. Открытый стандарт может превратиться в закрытый, а это повлечет за собой лицензионные отчисления каждого производителя компонентов, который будет использовать этот стандарт. Поэтому вполне понятным становится желание ведущих производителей процессоров откусить лакомый кусочек от этого огромного денежного пирога. Ведь выгода от этого двойная: во-первых, это деньги, которые принесет спецификация в результате лицензионных соглашений, во-вторых — оптимизация архитектуры шины под свои CPU позволит более жестко играть и на процессорном рынке. Однако проблем от такого разделения рынка может быть больше, чем преимуществ. "Arapahoe, продвигаемая на рынок Arapahoe Working Group, и HyperTransport, продвигаемая на рынок HTTC, могут привести к разделению архитектур рынка компьютеров", — заявил Габриэль Сартори (Gabriele Sartori), президент HyperTransport Technology Consortium. Результаты такого разделения могут быть похлеще того, что мы получили в связи с различием между разъемами для процессоров от Intel и AMD.

Фактически, одновременное присутствие на рынке двух шин (причем весьма вероятно, что один отдельно взятый чипсет будет поддерживать либо одну, либо другую, но не обе вместе) может повлечь за собой переориентацию производителей компонентов на платформу только одного из двух производителей, с полным отказом от второго. И, к примеру, видеокарту от NVIDIA, ориентированную только на шину HyperTransport, нельзя будет использовать на платформе Intel или, вполне возможно, для ее корректной работы нужен будет переходник, что не только повысит цену компьютера, но и уменьшит производительность. Но не буду пугать читателя страшными прогнозами, для которых пока нет реальных оснований, так как о равноправной конкуренции этих архитектур говорить еще очень рано. Пожалуй, главным аргументом в борьбе шинных спецификаций является тот факт, что фирма AMD готова выпустить на рынок продукты, поддерживающие HyperTransport, в этом году. Intel же не готова к такому шагу, так как спецификация Arapahoe находится лишь на стадии разработки и сможет увидеть свет только в конце 2003 года. Но обо все по порядку. Хотя стандарты еще не реализованы, информации о них скопилось достаточно, чтобы попытаться сравнить их, что мы с вами и сделаем.

Arapahoe

Стандарт системной шины, продвигаемый на рынок Arapahoe Working Group (также называемой Arapahoe Special Interest Group (Arapahoe SIG)), имеет второе название 3GIO (3D Generation Input/Output). Важным фактором, влияющим на продвижение этой архитектуры, является то, что входящие в Arapahoe SIG компании входили также и в PCI SIG и принимали активное участие в разработках шины PCI. Роджер Тайпли (Roger Tipley), президент PCI SIG, заявил, что переход с шины PCI на шину Arapahoe должен произойти так же плавно, как произошел переход с ISA на PCI. Столь самоуверенное заявление должно иметь под собой твердую почву. Итак, давайте рассмотрим шину Arapahoe и ее преимущества перед другими технологиями. Далее нам никак не обойтись без технических терминов и нескольких цифр.

  1. Arapahoe — симметричная, двунаправленная (bi-directional) шина, которая позволяет передачу данных со скоростью до 2.5 ГБ/с, что почти в 2.5 раза больше, чем пропускная способность шины PCI-X, и более чем в 9 раз быстрее скорости работы шины PCI (мы приняли за "скорость работы PCI" значение 266 МБ/с, как среднее между двумя возможными — 133 МБ/с для 32-битовой 33-мегагерцовой и 512 МБ/с для 64-битовой 66-мегагерцовой).
  2. Технология подключения периферийных устройств использует мост (host bridge) и несколько оконечных точек, позволяющих подключать периферийные устройства с помощью переключателя (switch). Switch может быть выполнен как отдельный логический элемент или интегрирован в host bridge. Переключатель в первую очередь предназначен для того, чтобы направлять потоки данных между периферийными устройствами, не используя host bridge, то есть позволяя так называемое peer-to-peer подключение. Данное решение должно меньше загружать компьютер передачей данных между конечными устройствами за счет отсутствия кэширования в памяти передаваемых данных.
  3. О пропускной способности шины Arapahoe нельзя говорить, как о чем-то фиксированном. Огромное отличие этой шины от PCI в том, что она будет иметь изменяемую пропускную способность (scalable bandwidth). Это значит, что каждый производитель, использующий эту спецификацию, сможет наращивать пропускную способность шины или уменьшать ее в зависимости от своих потребностей, добавляя или уменьшая количество линий.
  4. Адресация будет поддерживаться 32- и 64-битная. Каждый пакет данных будет иметь один из трех уровней приоритетов, так что система сможет разделить поток данных от периферийных устройств по приоритетам и обрабатывать данные согласно организованной в результате этого очереди.
  5. Архитектура будет иметь три уровня организации: физический уровень, уровень данных и уровень транзакций. Уровень транзакций будет пересылать запросы на чтение и запись данных от периферийных устройств и назад, а также организовывать пакеты данных для передачи на уровень данных.
  6. Одним из несомненных преимуществ стандарта Arapahoe может стать поддержка DDR RAM и Q(uadro)DR RAM, что позволит работать с памятью соответственно вдвое и вчетверо быстрее, чем это было ранее.

По заявлению руководства Arapahoe SIG, технология позиционируется на рынок прежде всего как конкурент аналогичным по своим задачам архитектурам AMD (HyperTransport) и Motorola (RapidIO). Другими словами, Arapahoe не претендует на то, чтобы быть единственной шиной "для всего". Среди "претендентов на сожительство" Луис Барнс (Louis Burns), вице-президент и главный менеджер Intel's Desktop Platforms Group, назвал InfiniBand, IEEE 1394b (FireWire), USB 2.0, Serial ATA и 1/10-Gb Ethernet.

Технология, призванная расширить возможности шины PCI, может и не увидеть свет из-за большой конкуренции на этом рынке. Не будем забывать, что до реализации этой шины в железе осталось еще 2 года, а конкуренты уже готовы выпустить на рынок свои продукты, которые даже сейчас будут лучше, чем планируемые Intel на срок через 2 года.

HyperTransport

Этот стандарт продвигается на рынок HyperTransport Technology Consortium, который в настоящий момент насчитывает около 150 участников, больших и малых фирм, занимающихся разработкой программного и аппаратного обеспечения. Консорциум был организован в 1997 году с целью развития архитектуры системной шины компьютера. Большое число фирм объявили о своем участии в проекте после того, как один из участников консорциума, NVIDIA, заявил о поддержке HyperTransport в своем чипcете nForce. Наиболее яркие представители перечислены в Таблице 1, причем большинство из них являются известными сторонниками открытой архитектуры. Давайте рассмотрим основные преимущества данной технологии по сравнению с существующими шинами PCI и PCI-X, а также теми, которые могут появиться в ближайшее время. Кстати, более детальную информацию по этому вопросу можно получить на сайте www.hypertransport.org.

  1. HyperTransport, ранее носившая название Lightning Data Transport (LDT), позиционируется как дополнение к технологии InfiniBand на рынок телекоммуникационных и встроенных систем, что налагает свои требования на спецификацию, реализующую преимущества обоих направлений. По заявлению руководства HTTC, технология может быть с одинаковым успехом использована как в серверных системах, так и в настольных и мобильных устройствах. Результатом этого станет некоторое изменение в архитектуре компьютера: связь между контроллерами периферийных устройств будет обеспечивать шина HyperTransport.
  2. Так же как и Arapahoe, технология позволяет производителям аппаратного обеспечения изменять количество сигнальных линий, что влечет за собой изменение количества выводов на плате, если этого требует реализация, а также изменение потребляемой мощности, так как лишние выводы требуют дополнительного питания. Этот факт может повлиять на широкое распространение технологии в мобильных системах. Кроме того, HyperTransport, так же как и Arapahoe, — это peer-to-peer шина, позволяющая обмениваться информацией между периферийными устройствами без задействования процессора и памяти. Протокол использует пакетированную передачу данных; за передачу данных между устройствами отвечает контроллер шины. Подключение контроллера в двухпроцессорной системе показано на рисунке:
  3. Шина позволяет передавать данные с частотой в 800 МГц по переднему и заднему фронтам стробирующего импульса, так что суммарная скорость работы шины получается около 12.8 ГБ/с при предаче двух восьмибитных слов за один такт. Давайте сравним эту производительность с производительностью существующих технологий. HyperTransport в 10 раз быстрее, чем InfiniBand (1.25 МБ/с в четырехканальной реализации), в 12 раз — чем PCI-X (1 ГБ/с), и в 48 раз — чем PCI (266 МБ/с).
  4. В отличие от Arapahoe шина HyperTransport позволяет передавать асимметричные потоки данных от(к) периферийных(м) устройств(ам). Симметричная, то есть одинаковая в обоих направлениях, пропускная способность не всегда нужна в компьютере. Примером могут служить системы, преимущественно отображающие графическую информацию, или системы, активно посылающие запросы в сеть для получения больших объемов информации.

В прошлом месяце фирма NVIDIA объявила о выпуске первого продукта, чипсета nForce, поддерживающего технологию HyperTransport. Большинство участников консорциума заявили, что продукты, поддерживающие шину, выйдут в конце текущего – начале следующего года. Это значит, что в настоящий момент спецификация готова к реализации в отличие от своего конкурента от Intel, причем некоторые параметры реализации технологии ничем не хуже, а некоторые — значительно лучше, чем параметры аналогичной реализации от Intel.

Табл. 2. Сравнительная характеристика стандартов Arapahoe и HyperTransport
ArapahoeHyperTransport
Параметры
Симметричная/асимметричнаясимметричнаяасимметричная
Двунаправленная/однонаправленнаядвунаправленнаядвунаправленная
Скорость передачи2.5 ГБ/с12.8 ГБ/с
Peer-to-peer подключение++
Scalable bandwidth++
Адресация32- и 64-битная64-битная
Планируемый срок выходаконец 2003 годаконец 2001 года

Вместо заключения

Мы рассмотрели всего лишь две, наиболее яркие технологии системных шин от постоянных конкурентов, Intel и AMD. Из этого не следует, что только эти две технологии претендуют на лидерство в построении архитектуры будущих компьютеров, просто они пока являются наиболее поддерживаемыми со стороны разработчиков. Вполне возможно, что будущее каждой из системных шин нового поколения определится самым простым образом: чем больше производителей аппаратного обеспечения поддержат ту или иную спецификацию, тем больше у нее будет возможностей занять лидирующее положение. Две рассмотренные спецификации не так уж сильно отличаются друг от друга, однако скорость появления продуктов на основе HyperTransport может стать решающим фактором.

www.ixbt.com

Шина HyperTransport 3.1(AMD).

Шина HyperTransport 3.1(AMD).

 

       Новая версия HyperTransport 3.1 лишила процессоры INTEL с шиной QPI преимущества этой быстрой шины. Предыдущая спецификация HyperTransport 3.0 имела пиковую пропускную способностью до 41,6 Гбайт/c. В стандарте была введена поддержка частот 1,8 ГГц, 2.0 ГГц, 2,4 ГГц, 2,6 ГГц, функции "горячего подключения", динамического изменения частоты шины и энергопотребления, динамического конфигурирования и других инновационных решений. Максимальное расстояние передачи данных без потери эффективности по шине HT 3.0 составляла 1 метр. Улучшена поддержка многопроцессорных конфигураций, добавлена возможность автоматического конфигурирования для достижения наибольшей производительности. Основные технические характеристики технологии Hyper-Transport HT 3.0 приведены в табл. 1. Физическая реализация дифференциальной линии масштабируемой шины HT показана на рис. 1.

Таблица 1

QIP Shot - Image: 2016-11-23 12:56:44

                Опираясь на высокоскоростную шину HyperTransport архитектура AMD64 позволила создавать системы, избавленные от недостатков предыдущих поколений архитектур и обладающие высокой масштабируемостью. Начиная со спецификации HyperTransport 3.0 был анонсирован низковольтный дифференциальный интерфейс Hyper-Transport HTX (рис. 1) и коннектор HTX (внешний разъем), что позволило протоколу HT работать с внешними устройствами. Специалисты признают, что на сегодняшний день шина Hyper-Transport 3.0 является наиболее быстрой и имеет очень гибкий протокол обмена.

QIP Shot - Image: 2016-11-23 12:55:23 Рис. 1. Принципы физической реализации шины HT (Low Voltage Differential Signaling - LVDS).

                Особенностью HT 3.0 является также и режим un-ganging, который позволит динамически, в процессе работы, конфигурировать шину. Например, одна 1x16 HT может виртуально быть сконфигурирована в 2x8 HT. Это может пригодиться при использовании с процессорами, логически разделенными на два ядра. На каждое ядро будет приходиться свой HT-канал. 

                В персональных компьютерах, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. Все эти нововведения и смена приоритетов преследуют, в конечном счете, одну цель - повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Последовательные шины не обязательно "однобитные", возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных (рис. 2), то есть в пакете импульсов содержатся данные, адрес, CRC и другая служебная информация, разделенная на логическом уровне.

QIP Shot - Image: 2016-11-23 12:56:01 Рис. 2.

                Основным отличием параллельных шин от последовательных является сам способ передачи данных. В параллельных шинах понятие "ширина шины" соответствует ее разрядности, т. е. количеству сигнальных линий, на которые одновременно выставляют передаваемые данные. Сигналом для старта и завершения цикла приема/передачи данных служит внешний синхросигнал. В последовательных же каналах передачи используется одна сигнальная линия, или используется две отдельные линии (каналы) для разделения потоков приема-передачи. Соответственно, информационные биты здесь передаются последовательно.                 Ширина последовательной шины определяется количеством одновременно задействованных отдельных последовательных каналов передачи. Данные для передачи через последовательную шину облекаются в пакеты. Пакет это единица информации, передаваемая как целое между двумя устройствами. В пакет, помимо собственно полезных данных, включается некоторое количество служебной информации: стартовые/стоповые биты, заголовки пакетов, синхросигналы, биты четности или контрольные суммы и т. п.                  Пропускная способность HyperTransport 3.1 по сравнению с текущей версией 3.0 увеличена на 23%. Увеличение максимальной тактовой частоты с 2,6 ГГц до 3,2 ГГц позволяет выполнить до 6,4 миллиардов передач в секунду, что в случае 16-битной связи соответствует высокой пропускной способности 25,6 Гбайт/с, а в случае 32-разрядной - истинно впечатляющие 51,2 Гбайт/с (максимальная производительность QPI составляет 6,4 миллиарда передач в секунду, что соответствует пропускной способности 25,6 Гбайт/с, но как уже отмечалось выше - это не является пределом для QPI). Еще более приметно увеличена тактовая частота в спецификации соединителей, используемых для связи между платами (HTX3) - с 800 МГц до 2,6 ГГц. Этот шаг нацелен, в частности, на повышение скорости взаимодействия процессоров и сопроцессоров, реализованных силами FPGA на отдельных платах.

al-tm.ru

Википедия - свободная энциклопедия

Избранная статья

Кассиодор (лат. Flavius Magnus Aurelius Cassiodorus Senator, между 480—490, Сцилациум, Бруттий — между 585—590, там же) — римский писатель-панегирист, историк и экзегет, государственный деятель во время правления короля остготов Теодориха Великого и его преемников, вершиной его карьеры стала должность префекта претория Италии.

Происходил из сирийского рода, поселившегося в Италии в IV веке, три поколения его предшественников занимали разнообразные государственные посты. Кассиодор начал карьеру придворного панегириста в первом десятилетии VI века. После падения Остготского королевства Кассиодор, по-видимому, полтора десятилетия провёл в Константинополе, в 554 году удалился в родовое имение на юге Италии, где основал просветительский центр, монастырь Виварий, в котором занялся реализацией своей образовательной и культурной программы. В библиотеке Вивария имелись все основные произведения позднеримской христианской литературы, а также многие классические сочинения; в монастыре осуществлялись переводы с греческого языка, которым сам Кассиодор владел слабо. Последние труды — о правописании и исчислении даты Пасхи — написаны в 93-летнем возрасте.

Принципиальная обращённость произведений Кассиодора к современникам обеспечила популярность его трудов, его наследие широко использовали Павел Диакон, Беда Достопочтенный, Гинкмар Реймский, Алкуин, Рабан Мавр, Марсилий Падуанский. Традиция скриптория и школы Вивария были продолжены в Монте-Кассино и аббатстве Боббио.

(далее…)

encyclopaedia.bid

Википедия - свободная энциклопедия

Избранная статья

Кассиодор (лат. Flavius Magnus Aurelius Cassiodorus Senator, между 480—490, Сцилациум, Бруттий — между 585—590, там же) — римский писатель-панегирист, историк и экзегет, государственный деятель во время правления короля остготов Теодориха Великого и его преемников, вершиной его карьеры стала должность префекта претория Италии.

Происходил из сирийского рода, поселившегося в Италии в IV веке, три поколения его предшественников занимали разнообразные государственные посты. Кассиодор начал карьеру придворного панегириста в первом десятилетии VI века. После падения Остготского королевства Кассиодор, по-видимому, полтора десятилетия провёл в Константинополе, в 554 году удалился в родовое имение на юге Италии, где основал просветительский центр, монастырь Виварий, в котором занялся реализацией своей образовательной и культурной программы. В библиотеке Вивария имелись все основные произведения позднеримской христианской литературы, а также многие классические сочинения; в монастыре осуществлялись переводы с греческого языка, которым сам Кассиодор владел слабо. Последние труды — о правописании и исчислении даты Пасхи — написаны в 93-летнем возрасте.

Принципиальная обращённость произведений Кассиодора к современникам обеспечила популярность его трудов, его наследие широко использовали Павел Диакон, Беда Достопочтенный, Гинкмар Реймский, Алкуин, Рабан Мавр, Марсилий Падуанский. Традиция скриптория и школы Вивария были продолжены в Монте-Кассино и аббатстве Боббио.

(далее…)

encyclopaedia.bid

Реферат hypertransport

скачать

Реферат на тему:

План:

    Введение
  • 1 Обзор шины
  • 2 Версии HyperTransport
  • 3 Применение HyperTransport
    • 3.1 Замена шины процессора
    • 3.2 Межпроцессорная шина
    • 3.3 Применение в маршрутизаторах и коммутаторах
    • 3.4 HTX и сопроцессорные соединения
    • 3.5 Консорциум HyperTransport
  • 4 Реализации

Введение

Логотип шины HyperTransport

Шина HyperTransport (HT), ранее известная как Lightning Data Transport (LDT), — это двунаправленная последовательно/параллельная компьютерная шина с высокой пропускной способностью и малыми задержками. Для разработки и продвижения данной шины был образован консорциум HyperTransport Technology. Технология используется компаниями AMD и Transmeta в x86-процессорах; PMC-Sierra, Broadcom и Raza Microelectronics — в процессорах MIPS; nVidia, VIA, SiS, ULi/ALi, AMD, Apple Computer и HP — в наборах системной логики для ПК; HP, Sun Microsystems, IBM и iWill — в серверах; Cray, Newisys и PathScale — в суперкомпьютерах, а также компанией Cisco Systems — в маршрутизаторах.

1. Обзор шины

HyperTransport работает на частотах от 200 МГц до 3,2 ГГц (у шины PCI — 33 и 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по фронту так и по срезу сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

HyperTransport поддерживает автоматическое определение ширины шины, от 2-х до 32 бит. Полноразмерная, полноскоростная, 32-битная шина в двунаправленном режиме способна обеспечить пропускную способность до 41 600 Мбайт/с = 2 (DDR) × 2 × 32/8 (байт) × 2600 (МГц) (максимум в одном направлении — 20 800 Мбайт/с), являясь, таким образом, самой быстрой шиной среди себе подобных. Шина может быть использована как в подсистемах с высокими требованиями к пропускной способности (оперативная память и ЦПУ), так и в подсистемах с низкими требованиями (периферийные устройства). Данная технология также способна обеспечить низкие задержки для других применений в других подсистемах.

Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32-разрядных слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете — всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40-битный адрес. Шина поддерживает 64-разрядную адресацию — в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).

Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений системы, для передачи прерываний, для конфигурирования устройств, подключённых к шине и для передачи данных.

Операция записи на шине бывает двух видов — posted и non-posted. Posted-операция записи заключается в передаче единственного пакета, содержащего адрес, по которому необходимо произвести запись, и данные. Эта операция обычно используется для обмена данными с высокоскоростными устройствами, например, для DMA-передачи. Non-posted операция записи состоит из посылки двух пакетов: устройство, инициирующее операцию записи посылает устройству-адресату пакет, содержащий адрес и данные. Устройство-адресат, получив такой пакет, проводит операцию записи и отсылает устройству-инициатору пакет, содержащий информацию о том, успешно ли произведена запись. Таким образом, posted-запись позволяет получить максимальную скорость передачи данных (нет затрат на пересылку пакета-подтверждения), а non-posted-запись позволяет обеспечить надёжную передачу данных (приход пакета-подтверждения гарантирует, что данные дошли до адресата).

Шина HyperTransport поддерживает технологии энергосбережения, а именно ACPI. Это значит, что при изменении состояния процессора (C-state) на энергосберегающее, изменяется также и состояние устройств (D-state). Например, при отключении процессора жёсткие диски также отключаются.

Электрический интерфейс HyperTransport/LDT — низковольтные дифференциальные сигналы, с напряжением 1,2 В.

2. Версии HyperTransport

Версия Год максимальная частота максимальная ширина пиковая пропускная способность(в оба направления) 1.0 1.1 2.0 3.0 3.1
2001 800 МГц 32 бит 12,8 Гбайт/c
2002 800 МГц 32 бит 12,8 Гбайт/c
2004 1,4 ГГц 32 бит 22,4 Гбайт/c
2006 2,6 ГГц 32 бит 41,6 Гбайт/c
2008 3,2 ГГц 32 бит 51,6 Гбайт/c

3. Применение HyperTransport

3.1. Замена шины процессора

Шина HyperTransport нашла широкое применение, в основном, в качестве замены шины процессора. Для примера, к процессору Pentium нельзя напрямую подключать устройства с шиной PCI, так как этот процессор использует свою специализированную шину (которая может быть различной у разных поколений процессоров). Для подключения дополнительных устройств (например с шиной PCI) в таких системах необходимы дополнительные устройства для сопряжения шины процессора с шиной периферийных устройств (мосты). Данные адаптеры обычно включают в специализированные наборы системной логики, называемые северный мост и южный мост.

Процессоры разных производителей могут использовать разные шины, а значит для них нужны разные мосты для соединения шины процессора с периферийными шинами. Компьютеры, использующие шину HyperTransport более универсальны и просты, а также более производительны. Однажды разработанный мост PCI-HyperTransport позволяет взаимодействовать любому процессору, поддерживающему шину HyperTransport и любому устройству шины PCI. Для примера, NVIDIA nForce чипсет использует шину HyperTransport для соединения между северным и южным мостами.

3.2. Межпроцессорная шина

Другое применение HyperTransport — шина NUMA многопроцессорных компьютеров. AMD использует HyperTransport как часть проприетарной архитектуры Direct Connect Architecture в своей линейке процессоров Opteron, Athlon 64 и Phenom. Технология шинного соединения HORUS компании Newisys расширяет концепцию до уровня кластерных систем.

3.3. Применение в маршрутизаторах и коммутаторах

HyperTransport так же может быть использована в маршрутизаторах и коммутаторах. Коммутаторы и маршрутизаторы могут иметь множество портов, данные между которыми должны передаваться как можно быстрее. Например, 4-портовый 100-Мбит/с Ethernet-коммутатор нуждается во внутренней шине с пропускной способностью не менее 800 Мбит/с (100 Мбит/с × 4 порта × 2 направления). Пропускная способность шины HyperTransport значительно превосходит 800 Мбит/с, что позволяет применить её для построения такого коммутатора.

3.4. HTX и сопроцессорные соединения

Недостаточная пропускная способность шины, соединяющей ЦПУ и сопроцессор часто является причиной головной боли у разработчиков компьютерных систем. Характеристики HyperTransport позволяют использовать её для данного применения, был разработан разъём для подключения сопроцессоров по шине HyperTransport, получивший название HTX (англ. HyperTransport eXpansion), и использующий разъём, механически совместимый с тем, который используется для подключения устройств 16x PCI Express. Использование разъёма HTX позволяет установленной в него карте расширения напрямую обмениваться данными с ЦПУ, а также осуществлять DMA-сеансы доступа к системной ОЗУ. Вскоре и сопроцессоры, основанные на ПЛИС получат интерфейс HyperTransport и, таким образом, возможность простой интеграции с материнской платой. Современное поколение ПЛИС от основных производителей (Altera и Xilinx) могут получить прямую поддержку интерфейса HyperTransport уже в ближайшее время.

3.5. Консорциум HyperTransport

В консорциум HyperTransport входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, а также Transmeta. Он управляет спецификациями HyperTransport, проводит новые разработки и продвижение стандарта. На 2005 год Дэвид Рич (David Rich) из AMD являлся президентом консорциума, Марио Савали (Mario Cavalli) — генеральным менеджером, Брайен Холден (Brian Holden) из PMC-Sierra одновременно являлся вице-президентом и возглавлял группу технических разработок, а Гарри Хиршман (Harry Hirschman) из PathScale возглавлял маркетинговую группу.

4. Реализации

  • ht_tunnel от проекта OpenCores (под лицензией MPL)
  • ATI Radeon Xpress 200 для процессоров AMD
  • NVIDIA nForceProfessional MCPs (media and communications processors)
  • Системный контроллер ServerWorks HT-2000 HyperTransport SystemI/O Controller
  • Шина HyperTransport используется в компьютерах фирмы Apple с процессором PowerPC G5

wreferat.baza-referat.ru

Реферат hyper-transport

скачать

Реферат на тему:

План:

    Введение
  • 1 Обзор шины
  • 2 Версии HyperTransport
  • 3 Применение HyperTransport
    • 3.1 Замена шины процессора
    • 3.2 Межпроцессорная шина
    • 3.3 Применение в маршрутизаторах и коммутаторах
    • 3.4 HTX и сопроцессорные соединения
    • 3.5 Консорциум HyperTransport
  • 4 Реализации

Введение

Логотип шины HyperTransport

Шина HyperTransport (HT), ранее известная как Lightning Data Transport (LDT), — это двунаправленная последовательно/параллельная компьютерная шина с высокой пропускной способностью и малыми задержками. Для разработки и продвижения данной шины был образован консорциум HyperTransport Technology. Технология используется компаниями AMD и Transmeta в x86-процессорах; PMC-Sierra, Broadcom и Raza Microelectronics — в процессорах MIPS; nVidia, VIA, SiS, ULi/ALi, AMD, Apple Computer и HP — в наборах системной логики для ПК; HP, Sun Microsystems, IBM и iWill — в серверах; Cray, Newisys и PathScale — в суперкомпьютерах, а также компанией Cisco Systems — в маршрутизаторах.

1. Обзор шины

HyperTransport работает на частотах от 200 МГц до 3,2 ГГц (у шины PCI — 33 и 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по фронту так и по срезу сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

HyperTransport поддерживает автоматическое определение ширины шины, от 2-х до 32 бит. Полноразмерная, полноскоростная, 32-битная шина в двунаправленном режиме способна обеспечить пропускную способность до 41 600 Мбайт/с = 2 (DDR) × 2 × 32/8 (байт) × 2600 (МГц) (максимум в одном направлении — 20 800 Мбайт/с), являясь, таким образом, самой быстрой шиной среди себе подобных. Шина может быть использована как в подсистемах с высокими требованиями к пропускной способности (оперативная память и ЦПУ), так и в подсистемах с низкими требованиями (периферийные устройства). Данная технология также способна обеспечить низкие задержки для других применений в других подсистемах.

Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32-разрядных слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете — всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40-битный адрес. Шина поддерживает 64-разрядную адресацию — в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).

Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений системы, для передачи прерываний, для конфигурирования устройств, подключённых к шине и для передачи данных.

Операция записи на шине бывает двух видов — posted и non-posted. Posted-операция записи заключается в передаче единственного пакета, содержащего адрес, по которому необходимо произвести запись, и данные. Эта операция обычно используется для обмена данными с высокоскоростными устройствами, например, для DMA-передачи. Non-posted операция записи состоит из посылки двух пакетов: устройство, инициирующее операцию записи посылает устройству-адресату пакет, содержащий адрес и данные. Устройство-адресат, получив такой пакет, проводит операцию записи и отсылает устройству-инициатору пакет, содержащий информацию о том, успешно ли произведена запись. Таким образом, posted-запись позволяет получить максимальную скорость передачи данных (нет затрат на пересылку пакета-подтверждения), а non-posted-запись позволяет обеспечить надёжную передачу данных (приход пакета-подтверждения гарантирует, что данные дошли до адресата).

Шина HyperTransport поддерживает технологии энергосбережения, а именно ACPI. Это значит, что при изменении состояния процессора (C-state) на энергосберегающее, изменяется также и состояние устройств (D-state). Например, при отключении процессора жёсткие диски также отключаются.

Электрический интерфейс HyperTransport/LDT — низковольтные дифференциальные сигналы, с напряжением 1,2 В.

2. Версии HyperTransport

Версия Год максимальная частота максимальная ширина пиковая пропускная способность(в оба направления) 1.0 1.1 2.0 3.0 3.1
2001 800 МГц 32 бит 12,8 Гбайт/c
2002 800 МГц 32 бит 12,8 Гбайт/c
2004 1,4 ГГц 32 бит 22,4 Гбайт/c
2006 2,6 ГГц 32 бит 41,6 Гбайт/c
2008 3,2 ГГц 32 бит 51,6 Гбайт/c

3. Применение HyperTransport

3.1. Замена шины процессора

Шина HyperTransport нашла широкое применение, в основном, в качестве замены шины процессора. Для примера, к процессору Pentium нельзя напрямую подключать устройства с шиной PCI, так как этот процессор использует свою специализированную шину (которая может быть различной у разных поколений процессоров). Для подключения дополнительных устройств (например с шиной PCI) в таких системах необходимы дополнительные устройства для сопряжения шины процессора с шиной периферийных устройств (мосты). Данные адаптеры обычно включают в специализированные наборы системной логики, называемые северный мост и южный мост.

Процессоры разных производителей могут использовать разные шины, а значит для них нужны разные мосты для соединения шины процессора с периферийными шинами. Компьютеры, использующие шину HyperTransport более универсальны и просты, а также более производительны. Однажды разработанный мост PCI-HyperTransport позволяет взаимодействовать любому процессору, поддерживающему шину HyperTransport и любому устройству шины PCI. Для примера, NVIDIA nForce чипсет использует шину HyperTransport для соединения между северным и южным мостами.

3.2. Межпроцессорная шина

Другое применение HyperTransport — шина NUMA многопроцессорных компьютеров. AMD использует HyperTransport как часть проприетарной архитектуры Direct Connect Architecture в своей линейке процессоров Opteron, Athlon 64 и Phenom. Технология шинного соединения HORUS компании Newisys расширяет концепцию до уровня кластерных систем.

3.3. Применение в маршрутизаторах и коммутаторах

HyperTransport так же может быть использована в маршрутизаторах и коммутаторах. Коммутаторы и маршрутизаторы могут иметь множество портов, данные между которыми должны передаваться как можно быстрее. Например, 4-портовый 100-Мбит/с Ethernet-коммутатор нуждается во внутренней шине с пропускной способностью не менее 800 Мбит/с (100 Мбит/с × 4 порта × 2 направления). Пропускная способность шины HyperTransport значительно превосходит 800 Мбит/с, что позволяет применить её для построения такого коммутатора.

3.4. HTX и сопроцессорные соединения

Недостаточная пропускная способность шины, соединяющей ЦПУ и сопроцессор часто является причиной головной боли у разработчиков компьютерных систем. Характеристики HyperTransport позволяют использовать её для данного применения, был разработан разъём для подключения сопроцессоров по шине HyperTransport, получивший название HTX (англ. HyperTransport eXpansion), и использующий разъём, механически совместимый с тем, который используется для подключения устройств 16x PCI Express. Использование разъёма HTX позволяет установленной в него карте расширения напрямую обмениваться данными с ЦПУ, а также осуществлять DMA-сеансы доступа к системной ОЗУ. Вскоре и сопроцессоры, основанные на ПЛИС получат интерфейс HyperTransport и, таким образом, возможность простой интеграции с материнской платой. Современное поколение ПЛИС от основных производителей (Altera и Xilinx) могут получить прямую поддержку интерфейса HyperTransport уже в ближайшее время.

3.5. Консорциум HyperTransport

В консорциум HyperTransport входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, а также Transmeta. Он управляет спецификациями HyperTransport, проводит новые разработки и продвижение стандарта. На 2005 год Дэвид Рич (David Rich) из AMD являлся президентом консорциума, Марио Савали (Mario Cavalli) — генеральным менеджером, Брайен Холден (Brian Holden) из PMC-Sierra одновременно являлся вице-президентом и возглавлял группу технических разработок, а Гарри Хиршман (Harry Hirschman) из PathScale возглавлял маркетинговую группу.

4. Реализации

  • ht_tunnel от проекта OpenCores (под лицензией MPL)
  • ATI Radeon Xpress 200 для процессоров AMD
  • NVIDIA nForceProfessional MCPs (media and communications processors)
  • Системный контроллер ServerWorks HT-2000 HyperTransport SystemI/O Controller
  • Шина HyperTransport используется в компьютерах фирмы Apple с процессором PowerPC G5

wreferat.baza-referat.ru